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Abstract. In a previous paper we proposed a method for the detection

of fault lines of a surface only known at scattered data. Now, we present

some techniques suitable to give accurate approximation of the detected

faults. First, we improve the technique of detection of fault points, pick-

ing out and collecting in a set all the data points close to fault lines.

To select these points we use a cardinal radial basis interpolation for-

mula. Then, applying a powerful refinement technique, we discuss dif-

ferent methods for the accurate approximation of fault lines, considering

procedures based on polygonal line, least squares, and best l∞ approxi-

mations. Numerical results point out the efficiency of our approach.
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Riassunto. In un precedente articolo abbiamo proposto un metodo

per l’individuazione delle linee di faglia di una superficie nota solo su

dati sparsi. Ora presentiamo alcune tecniche adatte a dare un’approssi-

mazione accurata delle faglie individuate. Dapprima, miglioriamo la

tecnica di individuazione dei punti di faglia, identificando e raccogliendo

in un insieme tutti i punti vicini alle linee di faglia. Per selezionare questi

punti usiamo una formula di interpolazione a base radiale cardinale.

Quindi, applicando una potente tecnica di raffinamento, proponiamo

metodi differenti per ottenere un’approssimazione accurata delle linee

di faglia, considerando procedure basate su approssimazioni poligonali,

sui minimi quadrati e sull’approssimazione ottima. I risultati numerici

mostrano l’efficienza del nostro approccio.

Parole chiave: dati sparsi, linee di faglia, metodi di individuazione e ap-

prossimazione, funzioni a base radiale.
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1. Introduction

We consider the problem of the detection and approximation of fault lines of

a surface only known on a finite number of scattered data. Fault detection is

obviously a preliminary and necessary phase, but here we will focus mainly on

accurate fault approximation. Predicting the location of fault lines and obtain-

ing accurate approximations of them enable the construction of constrained

approximation models of the surface overcoming common problems such as

over-smoothing.

Some applications require only a rough knowledge of faults, in the sense

that their number, position, and behaviour are significant, but accurate approx-

imations of fault lines are not so important. This may be the case, for example,

in oil industry, where fault detection provides useful information on the occur-

rence of oil reservoirs (see, e.g., [16, 13, 14]).

On the contrary, other applications call for accurate approximations of fault

lines, as it happens in the reconstruction of discontinuous surfaces when im-

ages are required to be highly reliable. As an example, we may refer to medical

images by magnetic resonance in which discontinuity lines may indicate the

presence of some pathology (see, e.g. [23]). Also in some geophysical prob-

lems, a faithful representation of irregular surfaces by an accurate data fitting

process is of great importance (see, e.g. [15]).

In the last two decades several authors have analyzed the fault detecting

and approximating problem, as well as the discontinuous surface approximat-

ing problem with different techniques and methodologies. To get an idea one

can see References, and, in particular, the monograph by Arcangéli, López de

Silanes and Torrens [4].

Each method has its own performance and range of application, but all of

them must unavoidably match the quantity of information, namely, the number

of data and their distribution. Hence, the quantity of information may lead to

choose in a specific application a method rather than another. Clearly, none of

the existing methods is universally satisfactory, and understanding their limita-

tions is an important key in applying them successfully.

In the present paper we recall in Section 2 the technique to detect fault

lines discussed in a previous work [3], adding explication on the choice of the

threshold value σ0, a crucial parameter. As basic tools for fault point detection,

i.e. points close to faults, we use a reliable cell-based search method and a

cardinal radial basis interpolant (CRBI), that is, Shepard’s formula possibly

with suitable changes. The output of this procedure is a set of fault points and

then a set of barycentres, generally closer to the faults than the fault points.

In Section 3 the barycentres are processed in various steps in order to handle
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complex fault situations. In Section 4 we point out the different techniques of

approximation, outlining in details the various procedures. Section 5 contains

some numerical results which show the effectiveness of our method. The use

of conventional approximation tools, if properly adapted to the topic, does not

lead to instability phenomena or undesiderable oscillations which can locally

or even globally hinder the approximation. Finally, in Section 6, we make some

remarks, giving an idea of possible developments.

2. Detection of fault lines

To characterize the data points on or close to the fault lines, named fault points,

first we consider a procedure based on local data interpolation by CRBIs, where

the difference between any known function value and the related value of the

interpolant is computed and compared with a threshold parameter. Then, we

introduce and define a new set of points, named barycentres, generally closer

to the faults than the fault points.

2.1. Detection of fault points

Let Sn = {Pk, k = 1, . . . ,n} be a set of distinct and scattered data points in a

domain D ⊂ IR2, and { f (Pk), k = 1, . . . ,n} a set of corresponding values of an

unknown function f : D→ IR, which is discontinuous across a set Γ = {Γ j, j =
1, . . . ,m} of fault lines

Γ j = {γ j(t) : t ∈ [0,1]} ⊂ D,

where γ j are unknown parametric continuous curves. On D\Γ the function f is

supposed to be sufficiently smooth. The domain D is bounded, closed, simply

connected, and contains the convex hull of Sn.

Initially, the cell-based search method by Bentley and Friedman [7] (adopted

also by Renka [20]) is applied to find the data point set NPk
neighbouring to

each point Pk of the data set Sn. This preprocessing phase is a classic nearest-
neighbour searching procedure (NNSP), in which we make a subdivision of

the domain D in cells and identify the set NPk
for each Pk. Then, to localize

the fault points of Sn that are close to a fault line, we propose a local inter-

polation scheme involving CRBIs, as alternative to the scheme based on thin

plate splines first suggested by Gutzmer and Iske [16], and then reconsidered

and extended by Crampton and Mason [12]. Therefore, considering the global

Shepard’s formula (see, e.g., [1])

F(P;Sn) =
n

∑
i=1

fi

d(P,Pi)
−µ

∑n
j=1 d(P,Pj)−µ

, F(Pi;Sn) = fi, i = 1, . . . ,n,

Accurate approximation of unknown fault lines from scattered data 5
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where d(P,Pi) is the Euclidean distance in IR2 and µ > 0, we adapt it to our

purposes and, in particular, to the cell structure of the domain D. Thus, we use

a local Shepard’s formula on each set NPk
, k = 1, . . . ,n, (note that Pk /∈ NPk

)

F(Pk;NPk
) =

nNPk

∑
i=1

fi

d(Pk,Pi)
−2

∑
nNPk

j=1 d(Pk,Pj)−2
, (1)

F(Pi;NPk
) = fi, i = 1, . . . ,nNPk

,

nNPk
being the number of points of NPk

.

Let us consider now the absolute value of the difference σ(Pk) between the

function value f (Pk) and the value of the interpolant at Pk, i.e.

σ(Pk) =
∣

∣ f (Pk)−F(Pk;NPk
)
∣

∣ . (2)

Supposing that the interpolant gives a good approximation to f in D, then σ(Pk)
gives a measure of smoothness of the function around Pk. Choosing a suitable

threshold value σ0 > 0, we compare the values σ(Pk) and σ0: if σ(Pk) is less

than or equal to σ0 then f is smooth in a neighbourhood of Pk, or else there is

a steep variation of f at Pk and accordingly Pk will be marked as a fault point.

When this procedure has involved all the data points, we have characterized

the set of fault points

F ( f ;Sn) = {Pk ∈ Sn : σ(Pk) > σ0},
which consists of all the data points which are expected either to belong to the

faults or to be close to them.

A crucial point is an optimal choice of the threshold value σ0. It is, in

general, a difficult task, because the finite number of function values is the

only available information. We start computing the largest deviation

S = max{| fi − f j| : i > j, for all i, j = 1,2, . . . ,n},
because obviously 0 < σ0 < S. An appropriate sorting procedure, included in

the preprocessing phase, gives the set of all deviations and, at the same time,

supplies some additional information on the variation of f .

To get information on the surface, its faults, and the parameter σ0, starting

from the set Sn of data points and the corresponding function values fi, i =
1, . . . ,n, we obtain a surface representation by the following local Shepard’s

formula

F(P;IP) =
nP

∑
i=1

fi

d(P,Pi)
−2

∑
nP

j=1 d(P,Pj)−2
, F(Pi;IP) = fi, i = 1, . . . ,nP, (3)
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where IP is the set of the nP data points closest to the point P, contained in

a ball centred at P. In general, a suitable choice of nP is 10. This Shepard’s

surface and the relative contour lines give very useful information about the

surface behaviour and the position of possible faults. A different approach is

proposed in [24] to obtain additional information about geological surfaces.

Then we go on to find an optimal value of σ0, introducing a variable thresh-

old parameter, namely

σ
(t)
0 =

S√
2t

, for t = 1,2, . . . . (4)

Starting up an iterative procedure, we increase the value of t by one unit each

time and compare σ(Pk) with σ
(t)
0 . When the number of the found fault points

is considered consistent with information that we acquire analyzing Shepard’s

surface and the contour lines, the process ends successfully.

In general, a few iterations suffice to determine an optimal threshold value

σ
(t∗)
0 and we assume σ0 ≡ σ

(t∗)
0 . Moreover, in some cases, one can shorten the

process, starting with values of t greater than 1, as suggested by examination

of Shepard’s surface.

2.2. Construction of barycentres

The set of fault points F ( f ;Sn), considered in Subsection 2.1, must be further

manipulated to obtain a new point set which supplies more information on the

faults.

Given a fault point Pk ∈ F ( f ;Sn) and the corresponding nearest-neigh-bor

set NPk
, we define DPk

= {P ∈ D : d(P,Pk) ≤ RPk
}, where RPk

= max{d(Pi,Pk)

: Pi ∈ NPk
}. Then we order the NPk

+ 1 points in N̄Pk
= NPk

∪ {Pk}, being

NPk
= card(NPk

), so that f (Pk1) ≤ f (Pk2) ≤ ·· · ≤ f (PkNPk
+1). The expected

jump δk of f in the subdomain DPk
is evaluated by

δk = max
1≤l≤NPk

∆ f (Pkl),

where ∆ is the forward difference operator. We set lk the lowest value of the

index l ∈ {1, . . . ,NPk
} for which δk is obtained.

The part Πk = DPk
∩ Γ of a fault line separates the set ∆L

k = {Q ∈ N̄Pk
:

f (Q) ≤ f (Pklk)} of all points of N̄Pk
with lower function values from the set

∆H
k = {Q ∈ N̄Pk

: f (Q) > f (Pklk)} of all points of N̄Pk
with higher function

values. If ∆L
k or ∆H

k is the empty set, then we enlarge NPk
and repeat the process,

Accurate approximation of unknown fault lines from scattered data 7
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so that N̄Pk
contains points lying in the two parts of the subdomain separated

by the fault line. Having determined ∆L
k and ∆H

k in this way, we calculate

the barycentres AL
k and AH

k of ∆L
k and ∆H

k , respectively. Then we find Ak =
(AL

k +AH
k )/2 and put it in A( f ;Sn), the set of the barycentres.

3. Refinement procedure

In Section 2, we took care of detecting the position of fault lines without con-

sidering explicity the main goal of our work, i.e. to obtain an accurate approx-

imation of fault lines. Now, we focus on this problem and describe briefly the

proposed procedure.

In the first phase, we subdivide the domain D by a regular grid and point out

the grid cells containing points of A( f ;Sn), i.e. barycentres. Since each grid

cell contains at least a barycentre, we calculate the barycentre of the points of

A( f ;Sn) in each cell, namely, the barycentre of the barycentres for each cell.

In this manner, we obtain a further set B( f ;Sn), whose points are generally

closer to the faults than the barycentres.

In the second phase, we order the points of the set B( f ;Sn), so that each

point can be identified by an index. In this way, we obtain the ordered set

C ( f ;Sn) = {Ci, i = 1, . . . ,m},

where m is the number of points of B( f ;Sn).
The nearest-neighbour searching procedure used in the sorting process to

build C ( f ;Sn) is as follows:

1. Detection of any point of B( f ;Sn) nearest to a side of the domain D and

assumption of this one as the first probe point.

2. Search of the nearest-neighbour point to the actual probe point and as-

sumption of this one as the new probe point, excluding the points already

considered.

3. Stopping the process, when all points of B( f ;Sn) are ordered.

The knowledge of C ( f ;Sn) is fundamental, because it allows us to handle

complex situations as the presence of several faults, and intersections or bifur-

cations of faults. Indeed, the problem of splitting fault lines into their branches

is, in general, a hard task for every method. Now, we can connect each point

of C ( f ;Sn) with the following one by a straight line segment, so obtaining a

preliminary, generally low accurate, approximation curve. Since each point of

8 Giampietro Allasia, Renata Besenghi e Roberto Cavoretto
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C ( f ;Sn) is labelled and the direction of the ordered points is known, we can

simply subdivide the set C ( f ;Sn) into a number q of subsets greater or equal

to the number of fault lines. Each subset of C ( f ;Sn) is denoted by the symbol

C j( f ;Sn), for j = 1,2, . . . ,q, and it is still an ordered set.

In some cases, it is convenient to consider a further stage of refinement,

called iterative refinement. It consists of two steps:

1. From the set C j( f ;Sn) = {Ci, j, i = 1, . . . ,m j, j = 1,2, . . . ,q}, we consider

Ci−1, j, Ci, j and Ci+1, j, for 2 ≤ i ≤ m j −1.

2. These three points are considered as the vertices of a triangle; then, we

calculate the barycentre C
(1)
i, j , 2 ≤ i ≤ m j −1, j = 1,2, . . . ,q, for each of

the m j−2 triangles, holding C1, j and Cm j , j fixed. These barycentres form

the set C
(1)
j ( f ;Sn), j = 1,2, . . . ,q.

Step 2 can be repeated, so obtaining the barycentres C
(k)
i, j , forming the set

C
(k)
j ( f ;Sn), for i = 2, . . . ,m j − 1, j = 1,2, . . . ,q, k = 2,3, . . . We can see the

good running of this technique in Figure 1 and Figure 2, where we compare

the polygonal lines obtained by applying or not the iterative refinement.
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This approach, based on repeated averages, is simple but very powerful,

because it allow us to construct smooth curves and obtain accurate approxima-

Figure 1: Set C(ƒ;Sn) = {Ci, i = 1,...,9} (left) and polygonal line obtained without applying the 

iterative refi nement (right).
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tions. In Section 5, we will discuss in detail some particularly difficult cases,

in which the presence of bifurcations requires a splitting of fault lines.

4. Accurate approximation of fault lines

We consider different approaches to approximate fault lines, namely the polyg-

onal line method, the least squares method, and the best l∞ approximation

method.

The polygonal method must be applied in all cases, because it is not only

useful in itself, but also preliminary to the other methods.

The minimax approach, in general, assigns too much weight to a bit of data

that is badly in error. The least squares approach puts substantially more weight

on a point that is out of approximation curve with the rest of data but will not

allow that point to completely dominate the approximation. In our case, the

situation just described is little important, because the refinement procedure

works out repeated averages.

4.1. Polygonal line method

The polygonal line method that we consider represents an improvement of the

procedures developed by Gutzmer and Iske [16] and by Allasia, Besenghi and

10 G. ALLASIA, R. BESENGHI, R. CAVORETTO
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Figure 2: Polygonal line obtained by applying the iterative refi nement to C(ƒ;Sn) = {Ci, i = 

1,...,9} (left) and polygonal line obtained by using the iterative refi nement with three iterations 

(right).
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De Rossi [3].

The ordered points of C ( f ;Sn) are connected by straight line segments, ob-

taining polygonal lines which approximate the fault lines. The performance of

the approximation procedures depends, in particular, on the number of points,

the cell dimension, and the form of the faults. Indeed, if a fault is centred in

the cells, the polygonal method produces good results; otherwise, the polygo-

nal line may appear too irregular and poorly accurate. To yield smoother (and,

possibly, more accurate) polygonal lines, we use the iterative refinement and

connect the points C
(k)
i, j by straight line segments.

4.2. Least squares method

The least squares method can be used to approximate a data set {(xi,yi), i =
1, . . . ,m} by an algebraic polynomial

Ps(x) = a0 +a1x+ · · ·+as−1xs−1 +asx
s (5)

of degree s < m− 1. In our problem we choose the constants a0,a1, . . . ,as to

solve the least squares problem

min
a0,...,as

m

∑
i=1

[yi −Ps(xi)]
2 ,

where (xi,yi)∈ C ( f ;Sn). Replacing the coefficients a0,a1, . . . ,as in (5) with the

values obtained by the least squares method, we get the polynomial approxi-

mating the fault line.

If there is only one fault in D, then the discrete least squares method can

be advantageously applied. Otherwise, when we deal with complex situations

(several faults, intersections or bifurcations of faults), the least square method

cannot be applied directly, but a suitable subdivision of C ( f ;Sn) is required.

Indeed, if the surface shows two or more fault lines, we need to split the set

C ( f ;Sn) in a number of subsets greater or equal to the number of fault lines

before applying the least squares method. This procedure is suggested also

when a fault line is not of open type. Acting in this way, the least squares

method yields very good results.

Finally, when a fault line is parallel or nearly parallel to y-axis, it is conve-

nient to make first a rotation of the coordinate axes and then to apply the least

squares method.

Accurate approximation of unknown fault lines from scattered data 11
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4.3. Best l∞ approximation method

The best l∞ (or Chebychev) approximation method can be considered as a

tool for finding polynomial approximations to fault lines starting from the set

C ( f ;Sn) or from some its refinement. The polynomial in (5) is chosen such as

to minimize the largest absolute value of the differences Ps(xk)− yk at m < n

discrete abscissae xk, 1 ≤ k ≤ m.

Given the abscissae xk and the corresponding ordinates yk, for k = 1,2, . . . ,m,

the polynomial in (5) is sought to solve the minimax problem (see, e.g., [6])

min
a0,...,as

max
k

|Ps(xk)− yk| . (6)

Introducing the residuals rk at the abscissae xk

Ps(xk)− yk = rk, k = 1,2, . . . ,m,

(6) becomes

min
a0,...,as

max
k

|rk| .

Among the residuals rk there exist at least one with the largest absolute value.

Let us denote it by H = maxk |rk| > 0. Hence, we have the inequalities

|Ps(xk)− yk| ≤ H, k = 1,2, . . . ,m, (7)

and the problem in (6) is equivalent to minimize the value H. Now, we rewrite

(7) in the form

∣

∣

∣

∣

∣

s

∑
j=0

(a j

H

)

x
j

k −
(

1

H

)

yk

∣

∣

∣

∣

∣

≤ 1, k = 1,2, . . . ,m. (8)

With the unknowns

ξ1 =
a0

H
, ξ2 =

a1

H
, ξ3 =

a2

H
, . . . , ξs+1 =

as

H
, ξs+2 =

1

H
,

the conditions (8) read as follows

∣

∣ξ1 + xkξ2 + x2
kξ3 + . . .+ xs

kξs+1 − ykξs+2

∣

∣ ≤ 1, k = 1,2, . . . ,m. (9)

To avoid expressions with absolute values, we observe that each inequality of

(9) is equivalent to two inequalities. Moreover, the variable ξs+2 equals the

12 Giampietro Allasia, Renata Besenghi e Roberto Cavoretto
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reciprocal value of the nonnegative quantity H which has to be minimized.

Thus we obtain the following linear program

maximize Z = ξs+2,

subject to the constraints

ξ1 + xkξ2 + x2
kξ3 + . . .+ xs

kξs+1 − ykξs+2 ≤ 1,

ξ1 + xkξ2 + x2
kξ3 + . . .+ xs

kξs+1 − ykξs+2 ≥ −1,

for k = 1,2, . . . ,m, and

ξs+2 ≥ 0.

As only ξs+2 has to satisfy a sign condition, the variables ξ1,ξ2, . . . ,ξs+1 are

free. Since the standard procedure requires that all the variables have nonnega-

tivity constrains, any problem containing variables allowed to be negative must

be converted to an equivalent problem involving only nonnegative variables

before the simplex method is applied. Each free variable ξ j, 1 ≤ j ≤ s + 1,

is replaced throughout the model by the difference of two new nonnegative

variables

ξ j = ξ+
j −ξ−j , j = 1,2, . . . ,s+1.

Since ξ+
j and ξ−j can have any nonnegative values, the difference ξ+

j − ξ−j can

have any value (positive and negative), so it is a legitimate substitute for ξ j in

the model. Now, applying the simplex method, we determinate the coefficients

a0, a1, . . . ,as of (5) and identify an approximating polynomial to the fault line.

The considerations previously developed for the least squares method are

effective also for the best l∞ approximation method. Hence, problems consid-

ering several faults, intersections or bifurcations of faults can be successfully

solved. Obviously, in particularly difficult cases, the iterative refinement can

be used in both the least squares method and the best l∞ approximation method;

this gives a greater smoothness to approximating curves.

We note that solving a minimization problem to find fault line approxima-

tion is proposed and carefully investigated by Crampton and Mason [12], who

use the simplex method too.

5. Numerical results

In this section we propose a detailed investigation of a few test functions. They

are examples of several numerical and graphical results, obtained by computa-

tional procedures developed in C/C++, Matlab, and Maple environments.

Accurate approximation of unknown fault lines from scattered data 13
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In the various tests we consider n randomly scattered data points Pi = (xi,yi)
in the square [0,1]× [0,1] ⊂ IR2, and the corresponding function values fi, for

i = 1, . . . ,n, supposing that these are the only information relative to f at our

disposal. In fact, in many real applications, one does not know the location of

faults on the surface or even whether or not the surface is faulted [4].

The detection and approximation schemes are tested against functions with

different kinds of faults, varying the dimension n of the sample generated by

a uniform distribution and the threshold value σ0. The results are obtained

by using a local Shepard’s formula, but other choices of CRBIs could work

as well. Although the CRBI choice can appear quite elementary, the use

of more advanced mathematical tools do not guarantee remarkable improve-

ments. Moreover, the cell-based search method and the CRBIs allow to par-

tition the domain, to process the data in some stages, and to insert or remove

data points. These features are particularly important in surveying phenomena,

such as geodetic or geophysical ones, whose data are distributed in regions

with different characteristics.

In general, it is remarkable that, also reducing considerably (e.g., few thou-

sand data points are sufficient) the dimension n of the scattered data set, the

method of detection holds its efficiency. In this case a loss of approximation

accuracy is unavoidable, but it depends essentially on the reduced information,

that is, the number of data points. In fact, the method allows to individualize

the position of fault lines all the same, outlining roughly their form.

If the set of obtained fault points is not satisfactory, the initial set of data

points can be enlarged, but considering only new data points located in a

smaller region including the fault. Then we can repeat the detection process

and find a new and larger set of fault points. The adaptiveness of this ap-

proach ensures good results, though the number of data points is meaningfully

reduced.

Test function 1

The test function

f1(x,y) =

{

1+2
⌊

3.5
√

x2 + y2

⌋

, if (x−0.5)2 +(y−0.5)2 < 0.16,

0, otherwise,

is a surface with discontinuities across the set

Γ = Γ1 ∪Γ2 ∪Γ3 = {(x,y) ∈ IR2 : (x−0.5)2 +(y−0.5)2 = 0.16}
∪ {(x,y) ∈ IR2 : x2 + y2 = 16/49, (x−0.5)2 +(y−0.5)2 ≤ 0.16}
∪ {(x,y) ∈ IR2 : x2 + y2 = 36/49, (x−0.5)2 +(y−0.5)2 ≤ 0.16}.
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As showed in some recent papers [16, 3, 17, 9], to which we refer for the

graphical representation of the analytic function, the surface is always constant

in D \Γ, but presents faults intersected and/or bifurcated. In particular, first

Gutzmer and Iske [16], and then Allasia, Besenghi and De Rossi [3] test their

detection methods against this function using 2000 scattered data. López de

Silanes, Parra and Torrens [17] also detect surface discontinuities using 2800

track data. This kind of data and, more in general, data disposed on a family

of lines or curves can be advantageously treated by the method proposed by

Allasia [2].

In the following, to compare our results with those obtained by other au-

thors, we will restrict ourselves to use n = 2000 data points. Obviously, the

proposed method works better considering a larger number of data points, e.g.

n = 4000, 10000, as showed by errors in Table 1 and Table 2.

Starting from the set Sn of 2000 data points and the function values fi, i =
1, . . . ,n, we use the formula (3) that, in general, is applied to approximate a

continuous surface. The obtained surface graphic and the respective contour

lines, in Figure 3, give us a preliminary, but very useful, information on the

surface, in general, and on the dislocation of possible fault lines in particular.
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After calculating the largest function oscillation, S = 7, and applying the

cell-based search method in the preprocessing phase, we proceed with the cal-

culus of the threshold value σ
(t)
0 , t = 1,2, . . ., that occurs with t∗ = 12 iterations,

namely σ0 ≡ σ
(t∗)
0 = σ

(12)
0 ≈ 0.11. In practice, one can start with the value

σ
(6)
0 = S/

√
26, based on the information given by Shepard’s surface.

Figure 3: Shepard’s surface (left) and contour lines (right) of ƒ1.
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Now, exploiting the particular cell structure of the domain D constructed

in the previous step, we evaluate F(Pk;NPk
) in (1) and compute σ(Pk) in (2).

We find 345 barycentres (belonging to the set A( f ;Sn)) and 115 barycentres of

barycentres (belonging to the set B( f ;Sn)), that are showed in Figure 4 (left)

and (right) respectively.
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Applying the NNSP to the set B( f ;Sn) we obtain the set C ( f ;Sn) and from

this the preliminary, low accurate, polygonal lines. Moreover, C ( f ;Sn) pro-

vides information on how to split fault lines into different branches. This phase

is not completely automatic, but a simple user interaction is required: it is to

examine the polygonal lines (see Figure 5 (left)).

Finally, after applying the iterative refinement, we can obtain an accu-

rate approximation of fault lines by one of the proposed methods. In gen-

eral, if we use the polygonal line method in this phase, three refinements are

needed; otherwise, least squares and best l∞ approximation methods, that hold

in themselves the smoothing property, require only one refinement. Figure 5

(right) presents the fault approximation obtained by the polygonal line method,

whereas the least squares and best l∞ approximation methods are showed in

Figure 6 (left) and (right), respectively.

In a similar way, we can handle any case, in which the unknown surface

is almost constant in D \Γ with one or more faults, and with intersections or

bifurcations of faults. Functions of this type are studied by various authors

Figure 4: Set of barycentres A(ƒ;Sn) (left) and set of barycentres of barycentres B(ƒ;Sn) (right)  

of ƒ1.
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Figure 5: Initial approximation of the fault lines of ƒ1, obtained by using NNSP and polygonal 

lines (left), and accurate approximation, obtained by polygonal line method with three iterations 

(right).

Figure 6: Accurate approximation of fault lines obtained by least squares (left) and best l∞
approximation methods with one iteration (right) of ƒ1.
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with different techniques and methodologies [19, 21, 8, 3, 17, 9, 12, 23, 18].

Test function 2

As second test, we consider the function (see [5])

f2(x,y) =







g(x,y), if y < min(1/3x,0.25),
h(x,y), if min(1/3x,0.25) ≤ y < 2x−0.5,
6, otherwise,

with

g(x,y) = 1+1.4375
(

2− (x−1)2
)

exp(5(1− x)(4y−1)),

h(x,y) = 1+
(

2− (x−1)2
)(

2− (y−1)2
)

,

and discontinuity set

Γ = Γ1 ∪Γ2 =

{(

t,
1

3
t

)

: 0 ≤ t ≤ 0.75

}

∪
{(

t,2t − 1

2

)

: 0.3 ≤ t ≤ 0.75

}

.

This function gives a discontinuous surface with two faults, which bifurcate at

the point (3/10,1/10). The fault line Γ1 has a jump size that vanishes when

x tends to 0.75, while Γ2 presents a variable jump size on all the domain D.

The surface is smooth on D \Γ, but shows different characteristics, because a

part of the function is constant, another is almost constant, and the remainder

changes enough quickly. It follows that this surface collects some features,

which are difficult to be represented, namely, bifurcated fault lines, rapid sur-

face variations, and changing or vanishing jump sizes.

In [19], Parra, López de Silanes and Torrens evaluate the function f2 at

10000 points randomly distributed on the domain and then apply their detec-

tion method, which determines fault lines using a divergence property of se-

quences measuring gradient near discontinuities (see also [18] for a different

characterization of jump discontinuities and the vertical fault detection).

In the following, we test our method focusing on the case of n = 2000

scattered data, but we also report errors obtained by n = 4000, 10000 (see

Table 1 and Table 2).

In Figure 7, we present Shepard’s surface (left) and the corresponding con-

tour lines (right). Such preliminary information highlights the function char-

acteristics, locating not only the two fault lines, but also the presence of rapid

variations of the surface.

Thus, since the maximum jump size is S ≈ 4.98, the procedure finds the

threshold value σ
(t)
0 after 9 iterations, so that σ0 ≡ σ

(9)
0 ≈ 0.22. This value
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leads, first, to obtain the set A( f ;Sn) consisting of 81 barycentres, and then the

set B( f ;Sn) containing 41 points (see Figure 8). To shorten, one can start with

σ
(4)
0 = S/

√
24.

The use of the NNSP generates the ordered set C ( f ;Sn), that allows the

construction of polygonal lines connecting each point of C ( f ;Sn) with its fol-

lowing by straight line segments.

Now, subdividing the set C ( f ;Sn) into two subsets C j( f ;Sn), j = 1,2, we

obtain an initial approximation of the fault lines, in Figure 9 (left). Then, we

apply the iterative refinement and get more accurate approximation curves, as

showed in Figure 9 (right) and Figure 10.

Test function 3

Finally, let us consider the discontinuity set Γ, which consists in the polyg-

onal line of vertices (0,0.2), (0.2,0.2), (0.35,0.225), (0.42,0.3), (0.48,0.4),
(0.49,0.53), (0.5,0.65), (0.65,0.725), (0.8,0.75), (1,0.8), and let f be the

function defined by

f3(x,y) =
1

[

(

3x− 7
2

)2
+

(

3y− 7
2

)2
] +g(x,y),

Figure 7: Shepard’s surface (left) and contour lines (right) of ƒ2.
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Figure 9: Initial approximation of the fault lines of ƒ2, obtained by using NNSP and polygonal 

lines (left), and accurate approximation, obtained by polygonal line method with three iterations 

(right).

Figure 8: Set of barycentres A(ƒ;Sn) (left) and set of barycentres of barycentres B(ƒ;Sn) (right) 

of ƒ2.
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where g denotes the function given by

g(x,y) =

{

0.35+ exp
[

−
(

3x− 3
2

)2 −
(

3y− 3
2

)2
]

, if (x,y) ∈ ω,

0, otherwise,

and ω is the part of the domain D located above the fault line (according to the

y-axis direction). This test function is considered by Gout et al. [15].

Using a scattered data sample of dimension n = 2000, we test our method

proposed in the paper and obtain the results as follows:

(a) From Shepard’s formula (3) and the relative contour lines (see Figure 11),

we have basic information on the behaviour and the orientation of the fault line.

(b) After obtaining the maximum surface variation S≈ 2.06, we find the thresh-

old value σ0 ≡ σ
(6)
0 ≈ 0.26. The detection phase identifies 36 points belonging

to the set A( f ;Sn), while the set B( f ;Sn) contains 22 points, represented in

Figure 12 (left).

(c) Constructing the set C ( f ;Sn), we approximate the fault line by the polygo-

nal line method applying once the iterative refinement as showed in Figure 12

(right).

Analogous results are obtained considering the least squares and best l∞
approximation methods.

Figure 10: Accurate approximation of fault lines obtained by least squares (left) and best l∞
approximation methods with one iteration (right) of ƒ2.
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Figure 11: Shepard’s surface (left) and contour lines (right) of ƒ3.

Figure 12: Set of barycentres of barycentres B(ƒ;Sn) (left) and comparison between the fault 

line of ƒ3 (dash-dot line) and the fault line approximation obtained by polygonal line method 

with one iteration (solid line) (right).
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Functions with features similar to those described in the last two tests can be

found in [19, 22, 17, 4]. Furthermore, recovering functions with discontinuities

sampled on cartesian grid are studied in [10, 11].

For the first two test functions, we compute the maximum absolute error

(MAE) and the root mean square error (RMSE), evaluating each fault line at

100 equispaced points in 0 ≤ x ≤ 1. If a fault line is parallel or nearly par-

allel to y−axis, it is convenient first to rotate the coordinate axes and then to

compute the errors. The results are reported in Table 1 and Table 2. For sim-

plicity, we compare only least squares and best l∞ approximation curves. In

fact, also a polygonal line could be expressed analytically as a linear piecewise

polynomial, but there would be too many pieces.

f/n 2000 4000 10000

f1 6.83495E−2 2.83227E−2 2.04529E−2

8.57487E−3 3.63514E−3 2.70869E−3

f2 1.06565E−2 7.34524E−3 4.41158E−3

7.97225E−3 5.40742E−3 3.79520E−3

f/n 2000 4000 10000

f1 6.89141E−2 2.63607E−2 2.08777E−2

8.91904E−3 4.57793E−3 3.47217E−3

f2 1.34226E−2 1.06295E−2 9.24255E−3

8.33712E−3 5.65426E−3 5.68766E−3

6. Conclusions

In this paper, we have presented and analyzed a method for the detection and

accurate approximation of fault lines in an unknown discontinuous surface

from scattered data.

The algorithm of detection, under a reasonable choice of the threshold pa-

rameter σ0, yields the set of barycentres A( f ;Sn). This phase allows to under-

Table 1: MAEs and RMSEs resulting from least squares method.

Table 2: MAEs and RMSEs resulting from best l∞ approximation method.
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stand the form and the number of faults. The approach is similar but alternative

to that proposed in [16], where it is used a local approximation scheme based

on thin plate splines combined with a triangulation method. Then, from the

set A( f ;Sn) we obtain the set of barycentres of barycentres B( f ;Sn), and its

ordered version C ( f ;Sn). This last set is necessary to handle complex situa-

tions, such as several faults, close type faults and intersections or bifurcations

of faults. In these cases C ( f ;Sn) is subdivided into a number of subsets greater

or equal to the number of discontinuities. Moreover, the set C ( f ;Sn) is basic

to apply the proposed approximation methods, namely, polygonal line, least

squares, and best l∞ approximation methods.

For automaticity and simplicity the polygonal line method turns out to be

more suitable in almost all applications, even if least squares or best l∞ approxi-

mations produce good or even better results. Moreover, the iterative refinement

allows us to construct smooth, planar curves rather than polygonal curves.

When the fault line is a multivalued function, applying least squares and

best l∞ approximations requires to subdivide the data. This situation can create

small errors at points in which two pieces of curve join, but the introduction

of the iterative refinement reduces considerably the occurrence of these errors

of connection. Nevertheless, the decision of how partitioning the domain can

hide several difficulties (see [12]).

The application of our method pointed out at least two problems. If the con-

sidered surface show very rapid variations outside the faults, then the detection

algorithm may identify false fault points. Another drawback occurs when the

jump size varies fastly or vanishes; here the optimal choice of a global param-

eter σ0 is difficult and sometimes it is impossible to detect correctly the fault

points. To solve these problems, we could split up the domain in a uniform

grid and find a threshold parameter for each grid cell. This approach should

allow to detect only the actual points of discontinuity. However, it is yet an

open problem and we are considering it.
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