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Abstract. This paper proposes Finite Elements (FEs) based on Lagrange 
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(LM) is recalled as the starting point for the development of the Carrera 
Unified Formulation (CUF), which is adopted to derive FE matrices. In 
addition, CUF allows accounting for the assumption of any theory order, 
e.g., any choice of Lagrange Points (LPs) through the layers, mainly val-
ues at the interfaces. FEs are developed in the framework of the so-called 
Equivalent Single Layer (ESL) modellings, and the results are compared 
to the more traditional and more computationally expensive Layer-Wise 
(LW) approaches. Four well-known benchmarks are considered to assess 
the capability and effectiveness of the proposed ESL beam, plate and shell 
FEs. Results clearly demonstrate the reliability of the models for the eval-
uation of displacements and both in-plane and shear stresses. Finally, the 
advantages of theories based on Lagrange polynomials formulations to 
deal with non-classical geometrical boundary conditions and global-lo-

cal approaches are discussed.
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Riassunto. Questo articolo propone alcuni Elementi Finiti (FEs) basati 
sui polinomi di Lagrange per l’analisi statica di travi, piastre e gusci 
multistrato. La meccanica Lagrangiana (LM) è richiamata come il pun-

to iniziale per lo sviluppo della Carrera Unified Formulation (CUF), la 
quale è adottata per derivare le matrici degli Elementi Finiti. Inoltre, la 
CUF permette di considerare assunzioni per teorie di ogni ordine; ad 
esempio, qualsiasi scelta dei punti di Lagrange (LPs) attraverso gli strati. 
Gli elementi finiti sono sviluppati nel contesto del cosiddetto approccio 
Equivalent Single Layer (ESL), e i risultati sono confrontati con quelli più 
onerosi noti come approcci Layer-Wise (LW). Quattro problemi campione 
sono considerati per valutare la capacità ed efficacia degli elementi finiti 
ESL travi, piastre e gusci. I risultati dimostrano la robustezza dei modelli 
per il calcolo degli spostamenti e delle tensioni nel piano e trasverse. 
Infine, sono discussi i vantaggi delle teorie basate sulle formulazioni con 
i polinomi di Lagrange per trattare condizioni al contorno geometriche 
non classiche, dimostrandone il vantaggio in analisi global-local.

Parole chiave: metodo degli elementi finiti, modelli unificati, piastre e 
gusci, polinomi di Lagrange, travi multistrato.

1.  Introduction

In the last decades, multilayered structures have been used in many 

applications, e.g., in aerospace, naval and automotive fields. The continu-

ous development of sophisticated components led to increasingly complex 

designs that require reliable analyses, which main issue is represented by 

the anisotropy of such structures, causing complex mechanical phenome-

na. For instance, the shear stresses must fulfil interlaminar continuity and 
transversely discontinuous mechanical properties cause the zig-zag distri-

bution of displacement fields. 
In [1], these effects were referred to as C0

z-requirements. The coupling 

between the in-plane and out-of-plane strains also represents a challenging 

topic. An overview of several computational techniques for the analysis of 

one-dimensional (1D) and two-dimensional (2D) structures can be found 

in major review articles, see [2, 3] and [4, 5], respectively. However, a 

brief discussion about some noteworthy contributions in the field is gi-
ven hereafter for the sake of completeness. Classical theories such as the 

Euler-Bernoulli Beam Model (EBBM) [6], and Timoshenko Beam Model 

(TBM) [7] are still widely applied in numerical simulations, although they 
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lack the ability to accurately evaluate the shear strain components, which 

are considered null by EBBM and constant by TBM. When dealing with 

thin-walled structures, whose cross-sectional deformation is relevant, 

an accurate evaluation of the stress distribution is necessary to describe 

the higher-order phenomena. For this reason, classical approaches may 

be inappropriate and lead to wrong conclusions, and advanced structural 

theories must be considered, see the classical book by Novozhilov [8]. 

Vlasov [9] introduced warping functions to capture the deformations of 

beam cross-sections. This approach found great success among scientists, 

see the works by Ambrosini et al. [10], Mechab et al. [11] and Friberg 

[12], who made use of warping functions for thin-walled structures. The 

so-called Generalized Beam Theory (GBT) was suggested by Schardt [13]. 

GBT allows the displacement field to be expressed as a linear combination 
of cross-sectional deformation modes. This theory was adopted by Peres 

et al. [14] for the analysis of curved thin-walled beams, and by Silvestre 

[15] for buckling problems. 

As far as the 2D plate and shell problems are concerned, the classical 2D 

model is represented by Kirchhoff-Love theory [16, 17], whose extension 
to laminates is known as the Classical Lamination Theory (CLT) [18]. CLT 

neglects the effect of out-of-plane strains and some drawbacks can surge 
for practical studies. On the other hand, First Shear Deformation Theory 

(FSDT), which is based on the works by Reissner [19] and Mindlin [20], 

accounts for the shear deformation effects by linear variation of in-plane 
displacements and it still plays a key role in commercial codes. In order to 

overcome the limitations of classical theories, several refined plate Finite 
Elements (FEs) were developed over the last years. For instance, see the 

one developed by Reddy [21], the so-called zig-zag theories [1], the the-

ories based on the Reissner’s Mixed Variational Theorem (RMVT) [5]. 

Most of the works discussed so far are based on an Equivalent Single Layer 

(ESL) approximation of the laminate. In ESL models, the variables are in-

dependent of the number of layers. On the other hand, a detailed analysis 

may require the adoption of Layer-Wise (LW) models, where the number 

of unknowns depends on the number of layers (see Carrera [22]). FE im-

plementations of LW theories were proposed by many authors, such as for 

example Rammerstorfer et al. [23], Reddy [24], Mawenya and Davies [25], 

and Noor and Burton [26]. However, the enhanced accuracy of LW models 

demands high computational costs. A review of the theories for the analysis 

of anisotropic multilayered plates was proposed by Carrera [27] and by 

Carrera and Robaldo [28] for thermo-piezoelasticity.
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Several efforts were addressed by researchers to make the composite beam, 
plate and shells models as accurate as efficient. An example is the concept 
of selective ply grouping or sublaminates [29, 30, 31], in which some local 

regions are created over the plate and shell thickness, identified by specific 
ply or plies, where LW theories are applied. On the other hand, in the glob-

al region, which is the portion of the domain where accurate analysis is not 

needed, lower-order and eventually ESL models can be adopted. Both ESL 

and LW models may eventually be implemented by using a combination of 

Lagrange and Legendre polynomials for formulate the kinematics theory over 

the thickness.

In this manner, the continuity of the variables between local and global 

regions can be immediately satisfied. In the work by Botshekanan Dehkordi 
et al. [32], a variable kinematics description in the thickness direction for 

the static analysis of sandwich plates was performed. That model was 

derived in the framework of the Carrera Unified Formulation (CUF) and 
Reissner-Mixed-Variational-Theorem (RMVT) was adopted for an a-priori 
evaluation of the transverse shear and normal stresses. Thus, the transverse 

stresses were approximated using a mixed LW/ESL approach. Adopting the 

principle of virtual displacements, Carrera and Valvano [33] implemented 

variable kinematics shell models for laminated structures with embedded 

piezoelectric components using Legendre polynomials. Instead, Lagrange 

polynomials are used for beam and plate and shell formulations in Pagani 

et al. [34]. 

A method to further reduce the computational costs, while keeping a 

high level of accuracy, is the adoption of global/local techniques. They 

were developed especially for composite materials, see [35]. Among these 

methods, particular attention is dedicated to the so-called «multi-steps 

methods», in which the local analysis of the zone of interest requires the 

boundary conditions at the interface level that are obtained by the analysis 

of the global structure. For instance, the global/local methodology pro-

posed by Mao et al. [36] makes use of a coarse mesh to analyse the entire 

structure and to obtain the nodal displacements, which were subsequently 

applied as boundaries to the refined local model. According to [36], the 

application of the boundary conditions in the local region inevitably in-

troduces errors. To minimize the effect of such errors, the local analysis 

generally requires a larger region than the critical one, where accurate 

stress fields need to be evaluated. In the framework of CUF, a two-step 

global/local methodology can be built (see [37, 35, 38]). The first step is 

devoted to the static analysis of a global model of the structure and it could 
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be done by commercial software using 1D or 2D elements. A criterion 

is established to identify the most critical region, which is subsequently 

analyzed in the second step by using high-order models, to obtain accurate 

stress fields. The refined theories used in the detailed analysis are imple-

mented in the framework of CUF. Another class of methods concerns the 

coupling of “refined” and “coarse” subdomains. Dhia [39] and Dhia and 

Rateau [40] suggested the Arlequin method to enforce compatibility within 

the overlapping domain with Lagrange multipliers. The Arlequin method 

was implemented in the framework of CUF by Biscani et al. [41] for 1D 

and 2D models [42]. He et al. [43] adopted the Arlequin method to bridge 

low- and high-order models constructed with CUF, and the Constrained 

Variational Principle (CVP) was used to derive beam elements for mul-

ti-layered structures with individual kinematics in each layer. Similar 

results were reproduced by Carrera et al. [44, 45] by coupling models with 

different kinematics by using point-wise Lagrange multipliers. The two 

methods differ since the first one needs an overlapping region between the 

sub-domains.

This paper wants to establish and detail the advantage of adopting the 

Lagrange polynomial for the construction of finite elements of beams, plates 
and shells. 

The main advantages of Lagrangian approach are the following:

– The user can choose the number of Lagrange Points (LPs) and their 

position, within the domain of the thickness in the case of plates and 

shells and the cross-section in the case of beams, without altering the 

results;

– The unknowns at every LP are pure displacements, and it is possible to 

use different boundary and congruence conditions.

This paper is structured as follows: Section 2 gives a brief intro-

duction about the Lagrangian Mechanics (LM) as a starting point 

for CUF formalism, followed by a description of the proposed ap-

proach for the modelling of multilayered beams, plates and shells in 

Section 3. Section 4 describes the CUF form of the beam, plate, shell 

assumptions while Section 5 introduces the related FEs description. 

Section 6 describes the four case studies analyzed in this work, where-

as the ESL numerical results, in terms of displacements and axial and 

shear stresses, are given in Section 7. In Section 8, meaningful exam-

ples are presented to assess the validity of the proposed ESL Lagrange 
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2. Lagrangian mechanics and CUF

Two popular approaches for the analysis of structures are represented by the

Newtonian and Lagrangian Mechanics (LM). The former considers the “equi-

librium” of the forces, internal and external, acting on the body. For instance,

let us consider a generic bar structure with constant cross-section and isotro-

pic and homogeneous material subjected to an external traction force and a

distributed axial force, as depicted in Fig. 1.


   




FIGURE 1 – Generic bar with constant cross-section and isotropic and homo-

geneous material subjected to an external traction force and a distributed axial

force.

The equilibrium along the y direction can be written as

N
,y =−py (1)

where N =
∫

σyy dA is the internal axial force, with A being the area of the

cross-section, σyy the axial stress coming from the Hooke’s law σyy = E εyy, E

the Young modulus and εyy = v
,y. Finally, py is the applied distributed loading.

In the case of LM, the principle of virtual work is introduced and applied to the

proposed problem :

δLint = δLext (2)

The choice of the Degree Of Freedom (DOF), to be used in Eq. (2), needs to be

taken. In this application, the displacement along the axial direction is selected,

and it is considered constant over the cross-section (x,z) of the bar in Fig. 1.

As a consequence, the unknown displacement and its variation are

v(x,y,z) = v0(y),
δv(x,y,z) = δv0(y)

(3)

:

approach for changing boundary conditions and global/local methodology. 

Finally, the conclusions of this work are drawn.
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The two terms of Eq. (2) can be written as follows :

δLint =
∫

V
σyyδεyydV =

∫ L

0
Aσyyδεyydy =

∫ L

0
Nδεyydy =

∫ L

0
Nδv0

,ydy

δLext =
∫ L

0
pyδv0(y)dy

(4)

where V is the volume of the structure. Introducing Eq. (4) into Eq. (2), upon

integration by parts (see [46] for details), the following relation is obtained

(boundary condition terms are omitted for the sake of brevity) :

δv0 : N
,y =−py (5)

which clearly states that the LM leads to the governing equations consistent to

the choice made at Eq. (3).

The process of making assumptions can be generalized and written in a uni-

fied manner, including the DOFs related to the cross-sectional displacement,

as follows (this would consist in a beam case) :

u(x,y,z) = Fτ(x,z)uτ(y), τ = 1, ...,M

δu(x,y,z) = Fs(x,z)δus(y), s = 1, ...,M
(6)

where u(x,y,z) = {u,v,w}T, M is the number of terms of the expansion func-

tion Fτ(x,z) and Fs(x,z) and the summing convention with the repeated indexes

τ and s is assumed. 1

Equation (6) represents the starting point for the Carrera Unified Formulation

(CUF). Using Eq. (2), the description of the static problem results in the reso-

lution of the following relation written in the strong form :

δus : Kτs uτ = Ps (7)

The boundary conditions equations have to be added to Eq. (7), as detailed, for

instance, in [47]. The unified formulation is described and adopted in this work

to build beam, plate and shells models.

1 Considering the v displacement only and N = 1, N = Fτ(x, z) = F
s
(x, z) = 1, vτ(y) = v0(y) and δv

s
 

= δv0, Eq. (6) is reduced to Eq. (3).

:
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3. Use of Lagrange Polynomials in theory of structures.

The advantages of adopting Lagrange polynomials for the structural analy-

sis are discussed in this section. We start with one-dimensional beam structures.

3.1. The case of homogeneous beams

The properties and possibility of Lagrange polynomials as considered in the

following bullets.

— Placement of unknown variables. Considering a generic beam struc-

ture as depicted in Fig. 2(a) and applying the classical Timoshenko

Beam Theory Fig. 2(b), the three-dimensional displacement field is eva-

luated as follows

u(x,y,z) = u0
1(y)

v(x,y,z) = v0
1(y)+ zφx1 − xφz1

w(x,y,z) = w0
1(y)

(8)

The system of equation described in Eq. (2) has five unknowns. The

(a) (b)

FIGURE 2 – Generic beam structure (a) and Timoshenko Beam Theory (b).

structure depicted in Fig. 2(a) can be described using Lagrange polyno-

mials, and the corresponding LPs can be put as described in Fig. 3 in

order to replicate the situation described by the classical approach (Fig.

2(b)). The resulting system of equation is then

u(x,y,z) = u(y)
v(x,y,z) = L1v1(y)+L2v2(y)+L3v3(y)+L4v4(y)
w(x,y,z) = w(y)

(9)

where L1,L2,L3 and L4 are the Lagrange polynomials evaluated at the

The system of equations described in Eq. (2) has five unknowns. The

The resulting system of equations is then

The properties and possibility of Lagrange polynomials are considered in 

the following bullets.

— Placement of unknown variables. Considering a generic beam struc- 

ture as depicted in Fig. 2(a) and applying TBM in Fig. 2(b), the three-

dimensional displacement field is evaluated as follows
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FIGURE 3 – Generic beam structure with the Lagrangian approach.

corresponding LPs. Then, the capability of LM to be valid for every

point can be exploited, and the position of them can be changed to des-

cribe the geometry of the cross-section, as described in Fig. 4.

FIGURE 4 – Generic beam structure with Lagrangian approach exploiting the

capability of localization of LPs.

— The problem variables are pure displacements. Referring to Fig. 4,

the kinematic of the cross-section can be enriched as described in the

following relations :

u(x,y,z) = L1u1(y)+L2u2(y)+L3u3(y)+L4u4(y)
v(x,y,z) = L1v1(y)+L2v2(y)+L3v3(y)+L4v4(y)
w(x,y,z) = L1w1(y)+L2w2(y)+L3w3(y)+L4w4(y)

(10)

The resulting system of equations has 12 unknowns, which are the dis-

placements on the three directions of the four nodes laying on the cross-

section. This leads to a heavier model (more DOFs), but allows for the

description of the cross-section in-plane deformation.

— Application of boundary conditions. Boundary conditions can be used

as kinematic constraints in correspondence of each LP. As a conse-

quence, it is possible to use boundary conditions also in the longitudinal

:

 LPs
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edges (see [48]). An example is given in Fig. 5.







 

FIGURE 5 – Boundary condition application with classical approach and La-

grange polynomial.

3.2. The case of multilayered structures

Multilayered structures are characterized by the so-called C0
z requirements

[1], that is the displacements and shear stresses are step-wise continuous in the

thickness direction of the laminate. As depicted in Fig. 6, LPs can be used at the

interface between two layers, and since the unknowns are pure displacements,

the C0
z requirements are satisfied. If a given Lagrange polynomial is used in





(a)

FIGURE 6 – Application of LPs at the interlaminar level of a composite struc-

ture.

each layer, the so-called Layer-Wise (LW) approach is obtained, where every
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layer has its kinematics independently described. This approach leads to accu-

rate results, but it could results more computationally expensive. An alternative

technique is that known as the Equivalent Single Layer (ESL). Basically, it ho-

mogenizes every layer into an equivalent one, which properties are obtained as

a combination on those of the layers. In the present work the efficiency of ESL

models based on Lagrange polynomials is proposed.

The capability of the placement of unknown variables, allows for the adoption

of the points in any position of the structure. Figure 7 reports a domain of a

four-layer structure where 2LPs, 4LPs and 5LPs are employed. Clearly, with

(a) (b) (c)

FIGURE 7 – Four-layer laminated structure discretized with 2LPs (a), 4LPs (b)

and 5LPs (c).

this capability, the desired unknowns can be calculated in any interlaminar po-

sition.

4. Unified formulation for beam, plate and shell theories with Lagrange

polynomials

Let us consider three beam, plate and shell multilayered structures as shown

in Fig. 8. For the 1D model, the cross-section Ω lays on the x,z plane of a

Cartesian reference system. As a consequence, the beam axis is placed along

the y direction. The 2D plate model uses the z coordinate for the thickness

direction and the shell adopts a curvilinear reference frame (α, β, z) to account

for the curvature, where α and β are the two in-plane directions. In this paper,

cylindrical shell structures are considered.

The displacement vector for the three models is introduced in the following :

u(x,y,z) = {ux uy uz}
T

u(α,β,z) = {uα uβ uz}
T (11)

 result

of
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 

 



 









FIGURE 8 – The modelling of generic composite structures using 1D and 2D

plate and shell models. A Cartesian reference system is employed for the 1D

beam and 2D plate model (x, y, z), whereas a curvilinear system (α, β, z) is

used for the 2D shell model. For 1D model, y is the direction of the beam axis,

and for the 2D models z is the thickness coordinate.

where T is the transpose operator. The first formula of Eq. (11) is valid for 
beams and plates, the second one for shells. The stress, σ, and strain, ε, 
components are expressed in vectorial form as follows:

σ = {σxx σyy σzz σxz σyz σxy}
T, ε = {εxx εyy εzz εxz εyz εxy}

T

σ = {σαα σββ σzz σαz σβz σαβ}
T, ε = {εαα εββ εzz εαz εβz εαβ}

T
(12)

Since linear analysis is performed in this work, only the linear strain 

components are considered. Therefore, the displacement-strain relations are 

expressed as
ε = b u                                                    (13)

where b is the matrix of differential operators. It changes according to the 
employed mathematical model and more information can be found in [49, 
50].

As far as the constitutive relation is concerned, linear elastic orthotropic 

materials are considered in this work. Consequently, the constitutive relation 

reads as:
σ = C ε,                                                  (14)

where C is the material elastic matrix, whose explicit form can be found in 
[51, 52]. The 3D displacement field u(x,y,z) of the 1D beam, 2D plate and 
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shell models, within the framework of CUF, can be expressed as follows :

1D BEAM : u(x,y,z) = Fτ(x,z)uτ(y)
δu(x,y,z) = Fs(x,z)δus(y)

2D PLATE : u(x,y,z) = Fτ(z)uτ(x,y), τ = 1,2, ....,M

δu(x,y,z) = Fs(z)δus(x,y), s = 1,2, ....,M

2D SHELL : u(α,β,z) = Fτ(z)uτ(α,β)
δu(α,β,z) = Fs(z)δus(α,β)

(15)

It is clear that each theory can be easily obtained from Eq. (15) by using po-

lynomials of different orders as Fτ and Fs. The expansion function used in this

paper is based on Lagrange polynomials, which general relation is written as :

Fm(z) =
n

∏
l=0, j �=m

z− zl

zm − zl

=
(z− z0) . . .(z− zm−1) . . .(z− zn)

(zm − z0) . . .(zm − zm−1)(zm − zm+1) . . .(zm − zn)

(16)

where n is the total number of LPs, m is the LP in which the formula is calcu-

lated and l are the other LPs. Obviously, to obtain polynomials of degree n+1,

n LPs are needed. This formulation allows to arbitrarily change the position of

LPs in the section (see Fig. 9).

For 1D structures, bi-dimensional functions discretizes the cross-section. In

 











  

FIGURE 9 – Through-the-thickness discretization of a multilayered structures

using a classical model (a). and two different placement of 4LPs (b, c).

this work three types of LPs placements are used : four LPs ensure a bi-linear

interpolation, nine LPs a quadratic interpolation and sixteen LPs a cubic inter-
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polation. For instance, if a quadratic interpolation is employed, the interpola-

tion functions for the 1D beam models are :

Fτ =
1

4
(r2 + rrτ)(s

2 + ssτ) τ = 1,3,5,7

Fτ =
1

2
s2

τ(s
2 − ssτ)(1− r2)+

1

2
r2

τ(r
2 − rrτ)(1− s2) τ = 2,4,6,8

Fτ = (1− r2)(1− s2) τ = 9

(17)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the

LPs. 2

For 2D structures six different one-dimensional interpolations have been adop-

ted, from 2 to 7 LPs, and the position of points was changed. As an example,

the cubic interpolation using 4LPs is detailed hereafter. As shown in Fig. 9, the

external LPs are located at z =−1 and z =+1, respectively, whereas the inner

ones can be moved over the domain. The four equations at each LP are written

as :

F1 =
1

(−2)(1+ z2)(1+ z3)
(z3 − (1+ z2 + z3)z

2 +(z2 + z3 + z2z3)z− z2z3)

F2 =
1

(z2 +1)(z2 − z3)(z2 −1)
(z3 − z3z2 − z+ z3)

F3 =
1

(z3 +1)(z3 − z2)(z3 −1)
(z3 − z2z2 − z+ z2) (18)

F4 =
1

(2)(1− z2)(1− z3)
(z3 +(1− z2 − z3)z

2 +(−z2 − z3 + z2z3)z+ z2z3)

5. Finite Element Approximation

The Finite Element Method (FEM) is adopted to discretise the generalized

displacements uτ and the generalized variations δus. Thus, recalling Eq. (15),

2 Equation (17) is written in the natural coordinate system, see [50] for more details.
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they are approximated as follows

1D BEAM : uτ(y) = Ni(y)Fτ(x,z)uτi

δus(y) = N j(y)Fs(x,z)δus j

2D PLATE : uτ(x,y) = Ni(x,y)Fτ(z)uτi, i = 1,2, ....,Nn

δus(x,y) = N j(x,y)Fs(z)us j, j = 1,2, ....,Nn

1D SHELL : uτ(α,β) = Ni(α,β)Fτ(z)δuτi

δus(α,β) = N j(α,β)Fs(z)δus j

(19)

where Ni and N j stands for the shape functions, the repeated subscripts i and j

indicate summation, Nn is the number of the FE nodes per element and qτi and

qs j are the following vectors of the FE nodal parameters :

uτi = {uxτi
uyτi

uzτi
}T

δus j =
{

δuxs j
δuys j

δuzs j

}T (20)

For the sake of brevity, the shape functions Ni and N j are not reported here.

They can be found in many reference texts, for instance, in Bathe [51]. Howe-

ver, it should be underlined that the choice of the expansion functions Fτ and Fs

is completely independent of the choice of the beam Finite Element (FE) to be

used along the beam axis. In this work, when using 1D beam models, classical

one-dimensional FEs with four-node (B4) are adopted, i.e. cubic approxima-

tion along the y axis is assumed. For the 2D plate and shell models, classical

2D nine-node bi-quadratic FEs (Q9) are adopted for the shape function in the

x,y and α,β planes, respectively.

For a better understanding of the proposed models, Fig. 10 shows the approxi-

mations previously explained for generic composite structures adopting 1D

beam, 2D plate and shell. In particular, the expansion functions Fτ, used to

approximate the cross-section of the 1D model and the thickness of the 2D

models, and the shape functions Ni for the beam axis and the 2D in-plane ap-

proximation, are reported.

u

u
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FIGURE 10 – Mathematical models of the 1D beam , 2D plate and shell of

generic composite structures.

According to LM, the principle of virtual displacements shown in Eq. (2)

can be written as : ∫
Vk

(δε
T

σ)dVk = δLext (21)

where k indicates the layer and Vk is the integration domain. Introducing the

geometrical relations (Eq. (13)), the constitutive equation (Eq. (14)), and ap-

plying CUF (Eq. (15)) and FEM (Eq. ((19)), the following governing equations

are obtained :

δu
k
s j : Kki jτs uk

τi = Pk
s j (22)

where Kki jτs is a 3 × 3 matrix, called fundamental nucleus (FN) of the mecha-

nical stiffness matrix. The nucleus is the basic building block from which the

stiffness matrix of the whole structure is computed. In fact, the construction of

the stiffness matrix is formally identical and the explicit form of the elements of

FN depends on the adopted formulation. For more information, see the works

of Carrera et al. [53, 54]. The fundamental nucleus is expanded on the indexes

τ and s to obtain the stiffness matrix of each layer k. Then, the matrices of

each layer are assembled at the multi-layer level depending on the considered

approach. Ps j is a 3 × 1 array, and it represents the fundamental nucleus of the

external load. Its explicit expression is not given here for the sake of brevity,

but it can be found in [53, 50] in the case of different loadings.

6. Benchmarks Description

To highlight the capabilities of the proposed ESL FEs based on Lagrange

polynomials, four well-known benchmark problems are considered, and they

are described hereafter. They regard a beam with two layers (both composite

and bi-metallic cases are considered), a three-layer plate, a five-layer sandwich

plate and a cylindrical shell.
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B1 : Two-layer beam

Geometric description












L/h = 20 and h/b = 0.5
Orthotropic material

EL/ET E3/ET νLT νT 3 νL3 GLT /ET GT 3/ET GL3/ET

25 1 0.25 0.25 0.25 0.5 0.2 0.2
with stacking sequence : [0◦/90◦]

Bimetallic isotropic materials
Bottom layer : E1=210GPa, ν1=0.3 ; Top layer : E2=75GPa, ν2=0.3

TABLE 1 – B1 : Geometrical and material loading properties of the two-layer

beam. The reference solution comes from a refined LW model.

The first analysis case is a two-layer beam, as shown in Table 1. The beam

is clamped and two different configurations of materials are considered, ortho-

tropic and bi-metallic. The structure is loaded in the transverse z direction by a

constant distributed pressure applied at the top of the beam. The pressure has

a value of 1000 Pa. The transverse displacement at the tip and two stresses at

the midspan are considered. The reference solution comes from a refined LW

model.

B2 : Three-layer composite plate

A composite symmetric three-layer plate was analysed as the second example,

and its geometric and loading conditions are described in Table 2. The plate is

simply supported on its longitudinal edges and it is loaded with a transverse

sinusoidal pressure p = Pz sin
(

π x
b

)

, with Pz = 1Pa. The analysis was originally

proposed by Pagano [55] and further investigated by Carrera [56].

B3 : Five-layer composite sandwich plate

A five-layer composite sandwich plate was further analysed. The geometric

and loading conditions are described in Table 3. The plate is simply supported

and it is loaded with a transverse bi-sinusoidal pressure p= Pz sin
(

π x
a

)

sin
(

π y

a

)

,

with Pz = 1000Pa. This study case is taken from [57] and [58].

Table 1 – B1: Geometrical and material loading properties of the two-layer beam. The reference 

solution comes from a refined LW model.

Geometric description












L/h = 20 and h/b = 0.5
Orthotropic material

EL/ET E3/ET νLT νT 3 νL3 GLT /ET GT 3/ET GL3/ET

25 1 0.25 0.25 0.25 0.5 0.2 0.2
with stacking sequence : [0◦/90◦]

Bimetallic isotropic materials
Bottom layer : E1=210GPa, ν1=0.3 ; Top layer : E2=75GPa, ν2=0.3
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Geometric quantities










b/h = 4 and 10 and a/b = 3
Material

EL/ET E3/ET νLT νT 3 νL3 GLT /ET GT 3/ET GL3/ET

25 1 0.25 0.25 0.25 0.5 0.2 0.5
Stacking sequence

Three equal layers : [0◦/90◦/0◦]
Non-dimensional displacements and stresses

w = 100 ET w
(

b4

h4

)

h Pz

σxx =
σxx

( b

h)
2

Pz

σxz =
σxz

( b

h) Pz

 
















Geometric quantities

 







a/h = 100, a = b, hCore = 8mm, hSkins = 1mm

Material 1 (Skins)
EL [GPa] E3 [GPa] ET [GPa] νLT νT 3 νL3 GLT [GPa] GT 3 [GPa] GL3 [GPa]

50 10 10 0.25 0.25 0.25 5 5 5
Material 2 (Core)

EL [MPa] E3 [MPa] ET [MPa] νLT νT 3 νL3 GLT [MPa] GT 3 [MPa] GL3 [MPa]
0.01 75.85 0.01 0.25 0.25 0.25 22.5 22.5 22.5

Stacking sequence
Bottom skins : [0◦/90◦], Top skins : [90◦/0◦] (each layer has the same thickness)

Non-dimensional displacements and stresses

w = 100 w ET h3

Pz a4 σxx =
σxx

Pz( a

h)
2 σxz =

σxz

Pz( a

h)

Table 2 – B2: Geometrical and material properties of the three-layer composite plate. The study 

case is taken from [55].

Table 3 – B3: Geometrical and material properties of the five-layer composite sandwich plate 
under distributed bi-sinusoidal. The study case is taken from [57].
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B4 : Three-layer composite shell

Geometric quantities



Rα/b = π/3, Rα/h = 10 and a = 1
Material

EL/ET E3/ET νLT νT 3 νL3 GLT /ET GT 3/ET GL3/ET

25 1 0.25 0.25 0.25 0.5 0.2 0.5
Staking sequence

Three equal layers : [0◦/90◦/0◦]
Non-dimensional displacements and stresses

w = 10 ET w

Pz h
(

Rβ
h

)4 σββ =
σββ

Pz

(

Rβ
h

)2 σβz =
σβz

Pz

(

Rβ
h

)

TABLE 4 – B4 : Geometrical and material properties of the three-layer compo-

site shell. The study case is taken from [54].

As a final study case, a cylindrical shell was considered. The geometric

properties and loading conditions are reported in Table 4. The shell is simply

supported on its longitudinal edges and it is loaded with a transverse sinusoidal

pressure p = Pz sin
(

π x
b

)

at the top position, with Pz = 1Pa. The analysis was

originally proposed by Ren [59] and further investigated by Carrera [54].

7. Results for ESL Lagrange solutions

The benchmark problems were analyzed numerically and the results are

shown in this section. Beam, plate and shell models are used for the static ana-

lyses, and values of displacement, axial and shear stress at particular points are

calculated and compared with literature and reference results.

B1 : Two-layer beam Preliminary convergence analyses were carried out to set

the reference solutions with the LW approach. Both transverse displacements

at the tip section and shear stresses at the mid-span were studied. As a conse-

quence, seven B4 FEs on the beam axis were chosen for the cross-ply beam

Table 4 – B4: Geometrical and material properties of the three-layer composite shell. The study 

case is taken from [54].

Geometric quantities



Rα/b = π/3, Rα/h = 10 and a = 1
Material

EL/ET E3/ET νLT νT 3 νL3 GLT /ET GT 3/ET GL3/ET

25 1 0.25 0.25 0.25 0.5 0.2 0.5
Staking sequence

Three equal layers : [0◦/90◦/0◦]
Non-dimensional displacements and stresses

w = 10 ET w

Pz h
(

Rβ
h

)4 σββ =
σββ

Pz

(

Rβ
h

)2 σβz =
σβz

Pz

(

Rβ
h

)
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(see Fig. 11 (a)), whereas twenty B4 elements were adopted for the bi-metallic

case (see Fig. 11 (b)). The converged model was used to evaluate displace-










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
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
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(b)

FIGURE 11 – B1 : Convergence analyses for the two-layer composite (a) and

bi-metallic (b) beam.

σyz

Model −uz σyy H I DOF
LW(Ref.) 5.263 90.33 23.00 23.04 1848

TBM 5.265 92.38 10.02 23.20 305
EBBM 5.140 92.96 — 23.14 183
LP16 5.240 91.43 15.44 23.05 1056
LP9 5.233 91.35 14.76 23.04 594
LP4 5.131 95.91 10.07 22.87 264

TABLE 5 – B1 : Transverse displacement and shear stresses of two-layer com-

posite beam. −uz is calculated at the free tip of the beam, σyy at the mid-span

and σyz at the mid-span of the beam at z = h/4.

ment, axial and shear stress components. The results are shown in Table 6 and

Figs. 12 and 13. Clearly, A good accuracy for displacement and axial stress is

obtained with every theory and LP position, whereas for the shear stress higher-

order theories or integrated stresses have to be recalled.

B2 : Three-layer composite plate In this study case, two side-to-thickness

Table 5 – B1: Transverse displacement and shear stresses of two-layer composite beam. -uz is 

calculated at the free tip of the beam, σyy at the mid-span and σyz at the mid-span of the beam at 

z = h/4.

a
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σyz

Model −uz σyy H I DOF
LW(Ref.) 0.2008 234.8 11.58 13.87 5124

TBM 0.2029 234.8 14.80 15.45 305
EBBM 0.2025 234.4 — 14.72 183
LP16 0.2008 234.7 14.71 13.87 2928
LP9 0.2006 234.9 11.54 13.71 1647
LP4 0.1629 234.8 14.79 14.59 732

TABLE 6 – B1 : Transverse displacement and shear stresses of two-layer bime-

tallic beam. −uz is calculated at the free tip of the beam, σyy at the mid-span

and σyz at the mid-span of the beam at z = h/4.
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FIGURE 12 – B1 : In-plane stress of clamped two-layer composite beam (a)

and two-layer bimetallic beam (b).

Table 6 – B1: Transverse displacement and shear stresses of two-layer bimetallic beam. -uz is 

calculated at the free tip of the beam, σyy at the mid-span and σyz at the mid-span of the beam at 

z = h/4.
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FIGURE 13 – B1 : Shear stress of clamped two-layer composite beam (a) and

two-layer bimetallic beam (b).

ratios equal to 4 and 10 are considered. Transverse displacements, in-plane and 
shear stresses were studied using ESL Lagrange and comparing the results with 
the analytical reference solution from [55]. Regarding transverse displacements, 
some differences arise for each theory, especially for lower-order theories (as 
displayed in Table 7). Accurate results can be obtained for in-plane stresses (see 
Table 7 and Fig. 14) for both considered thicknesses. However, some issues are 
found for side-to-thickness ratio equal to 4 and LP3 and LP2. Considering shear 
stresses, critical issues can be seen, as displayed in Table 7 and Fig. 15. Using 
Hooke’s Law, the results differ from the reference solution, even though LP6 and 
LP7 are closer to the analytical solution. This problem can be overcome if stress 
recovery is adopted (see Fig. 15). 

     B3 : Five-layer composite sandwich plate. For the third benchmark prob-
lem, a sandwich structure was considered to underline the potentialities and 
drawbacks of ESL approach. Accurate results for transverse displacements 
can be obtained at the top position (some issues surge only for low-order LP2 
and LP3). However, it is not possible to obtain the same distribution as the ref-
erence solution (see Table 8 and Fig. 16 (a)), even if a higher number of LPs 
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b/h 4 10 4 10 4 10
Model uz σxx σxz (H) DOF
Ref. 2.820 0.919 1.176 0.725 0.358 0.420 —

FSDT 2.078 0.757 0.628 0.631 0.164 0.165 1085
CLT 0.504 0.504 0.627 0.629 — — 651
LP7 2.704 0.888 1.130 0.724 0.327 0.388 4557
LP6 2.703 0.888 1.131 0.724 0.326 0.388 3906
LP5 2.652 0.867 1.130 0.718 0.289 0.315 3255
LP4 2.653 0.867 1.130 0.718 0.289 0.315 2604
LP3 2.057 0.753 0.653 0.628 0.162 0.164 1953
LP2 2.076 0.754 0.626 0.628 0.164 0.164 1302

TABLE 7 – B2 : Transverse displacement, in-plane and shear stresses of simply

supported three-layer composite plate under sinusoidal pressure. Comparison

between different ratios b/h. uz and σxx are calculated in the middle, σxz is

calculated at x/4,y/4,z/2. Ref. solution comes from [55].
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FIGURE 14 – B2 : In-plane stresses for three-layer composite plate. b/h=4 (a)

and b/h=10 (b) cases. Ref. solution comes from [55].

Table 7 – B2: Transverse displacement, in-plane and shear stresses of simply supported three-

layer composite plate under sinusoidal pressure. Comparison between different ratios b/h. –u z 
and –σxx are calculated in the middle, σxz is calculated at x/4, y/4, z/2. Ref. solution comes from 

[55].
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FIGURE 15 – B2 : Shear stresses for three-layer composite plate. b/h=4 (a)

and b/h=10 (b) cases. Ref. solution comes from [55].

is employed. In Table 8 in-plane stresses are shown, and each theory leads to

results close to the reference solution. Some problems arise when evaluating

shear stresses, and using more LPs along the thickness can improve the solu-

tion (see Table 8 and Fig. 16 (b)), but the ESL is not capable of describing

an accurate distribution within the skins. Thence, the ESL cannot evaluate the

correct distribution over the thickness and a LW approach is compulsory.

B4 : Three-layer composite shell Finally, a shell study case was conside-

red. Clearly, transverse displacements and in-plane stresses (shown in Table

9 and in Fig. 18 (a)) can be obtained with a good degree of precision, while

increasing with the number of employed LPs.
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Model w σxx σxz DOF
Ref. 3.1167 -0.7819 0.1825 27783

FSDT 2.9330 -0.7955 0.0040 2205
CLT 2.9209 -0.7592 — 1323
LP7 3.1078 -0.7730 0.2290 9261
LP6 3.1078 -0.7727 0.2290 7938
LP5 3.0203 -0.7766 0.0918 6615
LP4 3.0203 -0.7765 0.0918 5292
LP3 2.9330 -0.7671 0.0041 3649
LP2 2.8127 -0.7629 0.0040 2646

TABLE 8 – B3 : Transverse displacement, in-plane and shear stresses of the

five-layer composite sandwich plate. w calculated in the middle of the plate

at the top skin, σxx calculated in the middle of the plate at the bottom skin,

σxz calculated at a quarter of the plate in the middle of the core. Ref. solution

comes from [57].
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Table 8 – B2: Transverse displacement, in-plane and shear stresses of the five-layer composite  
sandwich plate. –w calculated in the middle of the plate at the top skin, –σxx  calculated in the 

middle of the plate at the bottom skin, –σxz calculated at a quarter of the plate in the middle of the 

core. Ref. solution comes from [57].
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FIGURE 16 – B3 : Transverse displacement (a) and shear stress (b) of five-layer

composite sandwich. Ref. solution comes from [57].



124 Erasmo Carrera, Riccardo Augello, Daniele Scano

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

−0.5 −0.25  0  0.25  0.5

σ
xx

z

Ref.

LP6

LP4

LP3

(a)

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

−0.5 −0.25  0  0.25  0.5

σ
xx

z

Ref.

LP6

LP4

LP3

(b)

FIGURE 17 – B3 : Transverse displacement (a) and shear stress (b) of five-layer

composite sandwich. Ref. solution comes from [57].

σβz

Model uz σββ H I DOF
Ref. 0.144 0.897 — 0.525 —

FSDT 0.112 0.721 0.184 0.519 875
CLT 0.076 0.709 — 0.500 525
LP7 0.139 0.875 0.476 0.527 3675
LP6 0.139 0.875 0.476 0.527 3150
LP5 0.136 0.868 0.382 0.533 2625
LP4 0.136 0.869 0.382 0.533 2100
LP3 0.119 0.766 0.196 0.545 1575
LP2 0.119 0.766 0.196 0.545 1050

Table 9 – B4: Transverse displacement, in-plane and shear stresses of simply supported three-

layer composite shell under sinusoidal pressure. –uz calculated in the middle of the shell, –σββ 
calculated in the middle of the shell at the top surface and –σβz  calculated at a quarter at the top 

surface. Ref. solution comes from [59].
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FIGURE 18 – B4 : In-plane (a) and shear stress (b) of simply supported three-

layer composite shell under sinusoidal pressure. Ref. solution comes from [59].

As far as the shear stresses are considered (see Fig. 18 (b)), reliable results

can be obtained in the middle point. However, the overall distribution is not as

accurate as the reference one.

8. Special capabilities of Lagrange Expansion

The capability of the proposed ESL approach to deal with physical boun-

dary conditions and global/local applications is proposed in this section with

practical examples.

Physical boundary conditions on different nodes

This example shows how it is possible to decide the boundary conditions by

using the Lagrange expansion in a general way. In Fig. 19, the cases of classical

and Lagrange models are considered.
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 



 










FIGURE 19 – Computational models for Taylor and Lagrange (ESL approach)

Expansions.

Clearly, if boundary conditions have to be used to the middle line, both

classical and Lagrange models can deal with it in an automatic manner. On the

contrary, if the boundary conditions need to be applied at another point (in Fig.

19 at z = 1/3), classical models need to include an additional equation for the

resolution of the problem, which is reported in Eq. (23).

w(z1) = w0 + z1φ = 0 (23)

That additional equation can be included in the model using Lagrange multi-

pliers, expressed by the following equation

Π = λ
T
Bq

Thence, the following linear system has to be adopted.

[

K BT

B 0

][

q

λ

]

=

[

F

0

]

Thus, new unknowns have to be added to the displacement ones and the stiff-

ness matrix has to be modified (for more information about Lagrange multi-

pliers in CUF framework, interested readers are referred to [44]). This matrix

also has the major drawback not to be necessarily positive definite and nume-

rical problems can surge. On the contrary, Lagrange models can automatically

include the boundary condition thanks to their capability to move the LPs, so

it is necessary to have a point in correspondence of the desired location.

To highlight this capability, two different simply-supported conditions are

considered (see figure 20). First, the condition is used at the bottom layer at

also has the major drawback of not being necessarily positive definite and nume 
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 







FIGURE 20 – Scheme of two different boundary conditions used for three-layer

composite plate to demonstrate the capabilities of LPs.

z = −1/2 over the longitudinal edge. The second one is used at the interface

layer at z=−1/3. The ESL theories are compared with LW reference theory in

Tab. 10 and it can be seen how results can be obtained for both conditions, wi-

thout losing accuracy with respect to the LW model. In particular, good results

Conditions BC-1 BC-2
Model DOF uz σxx σxz uz σxx σxz

LW(Ref.) 12369 0.617 0.656 0.307 0.611 0.655 0.307
LP7 4557 0.610 0.656 0.281 0.604 0.655 0.281
LP6 3906 0.610 0.653 0.281 0.604 0.653 0.281
LP5 3255 0.604 0.653 0.224 0.579 0.652 0.224
LP4 2604 0.604 0.652 0.224 0.579 0.652 0.224
LP3 1953 0.573 0.628 0.115 0.568 0.628 0.115

TABLE 10 – Transverse displacement, in-plane and shear stresses of simply

supported three-layer composite plate (aspect ratio equals to 20). Compari-

son between different boundary conditions used. uz and σxx are calculated in

the middle, σxz is calculated at x/4,y/4,z/2, see Table 2 for the adopted non-

dimensional values. LW is composed of six LP4.

are obtained for transverse displacements and in-plane stresses.

Global/Local method with ESL Lagrange for sandwich plate

An application of the capability of the Lagrange models of using different

boundary conditions see Fig. 19) is a single-step global/local approach. When

dealing with different mathematical models, the main issue is to connect the

two domains. Figure 21 describes this issue. In particular, Fig. 21(a) displays

LW and classical domains and due to the difference of the mathematical ap-

proaches, four additional equations have to be added to the system of equation

(similarly to what is shown in Fig, 19 and Eq. (23)). For instance, Carrera et al.

Table 10 – Transverse displacement, in-plane and shear stresses of simply supported three-layer 

composite plate (aspect ratio equals to 20). Comparison between different boundary conditions 
used. –uz and –σxx are calculated in the middle, –σxz is calculated at x/4, y/4, z/2, see Table 2 for the 

adopted nondimensional values. LW in composed of six LP4.

(see Fig. 19)

Fig. 19



128 Erasmo Carrera, Riccardo Augello, Daniele Scano

 




(a)

 




(b)

FIGURE 21 – Example of joining different structural domains. Between classi-

cal and LW Lagrange-based zones, there are no connection points (a), whereas

one can opportunely choose the position of LPs to join different domains (b).

 



FIGURE 22 – Example of the single-step global/local approach applied to the

five-layer sandwich plate. ESL approach was used in the dark grey part and the

LW approach in the light grey part.
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[44, 45, 50] used the Lagrange Multipliers to overcome this problem. On the

contrary, the ESL models shown in this work, allows for the arbitrary use of

LPs, so that a point-by-point connection can be ensured between the domains,

as shown in Fig. 21(b). This procedure is hereafter applied on the five-layer

composite sandwich plate, as illustrated in Fig. 22, where the ESL approach

was used in the dark grey part and the LW approach in the light grey part. The

results are shown in Table 11, where the upper scripts indicate the number of

employed FEs. The capability to obtain accurate results is shown, especially for

Model w σxx σxz DOF
LW 3.1167 -0.7819 0.1825 27783
LP6 3.1078 -0.7727 0.2290 7938
LP4 3.0203 -0.7765 0.0918 5292

LW×20-LP6×80 3.1150 -0.7829 0.1576 12663
LW×30-LP6×70 3.1180 -0.7758 0.1704 14553
LW×20-LP4×80 3.0367 -0.7725 0.1665 10647
LW×30-LP4×70 3.0510 -0.7624 0.1764 12789

TABLE 11 – Transverse displacement, shear and normal stresses of the five-

layer composite sandwich plate. w calculated in the middle of the plate at the

top skin (ESL domain), σxx calculated in the middle of the plate at the bottom

skin (ESL domain), σxz calculated at a quarter of the plate in the middle of the

core. LW is composed of five LP5. Comparison with Global Local Solution.

the shear stresses, with fewer DOFs than the LW solution. In particular, trans-

verse displacements and shear stresses for the combinations LW×30-LP6×70

LW×30-LP4×70 and LW are displayed in Fig. 23.

9. Conclusions

The present research work proposed Equivalent Single-Layer Finite Ele-

ments based on the Lagrange polynomials for the static analysis of beams,

plates and shells. One-dimensional beams and two-dimensional plate and shell

models were built in the framework of the Carrera Unified Formulation. Four

well-known case studies were taken from open literature, and the results obtai-

ned with the developed ESL FEs were compared with those from Layer-Wise

models and reference. The following main conclusions can be summarized :

1 ESL FE models based on Lagrange polynomials lead to increasingly

accurate results, as the number of LPs increases, compared to LW mo-

dels. This is true for both transverse displacements and in-plane stresses.

Table 11 – Transverse displacement, shear and normal stresses of the fivelayer composite san-

dwich plate. –w calculated in the middle of the plate at the top skin (ESL domain), –σxx calculated 

in the middle of the plate at the bottom skin (ESL domain), –σxz calculated at a quarter of the plate 

in the middle of the core. LW is composed of five LP5. Comparison with Global Local Solution.

models and references. The following main conclusions can be summarized:
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FIGURE 23 – Transverse displacement (a) and shear stress (b) of five-layer

composite sandwich. LW is composed of five LP5. Comparison with Global

Local Solution.

Less accurate results are obtained for shear components (unless they are

evaluated integrating the three-dimensional (3D) indefinite equilibrium

equations, rather than with Hooke’s law).

2 The application of Lagrange Points (LPs) and the fact that unknowns are

pure displacements allows implementing boundary conditions which

are closer to the ones used in practical applications.

3 The use of Lagrange polynomials leads to a single-step global/local pro-

cedure without implementing any additional constraint equation (as it

happens in classical models). This method allows for an accurate eva-

luation of both in-plane and shear stresses when compared with LW

models with a significant decrease of computational cost with respect to

the use of traditional models and Lagrange multipliers.
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